Intel® Software (mte')

Development Products Software

Writing Parallel Programs That Work

Paul Petersen (Intel)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Abstract

Serial algorithms typically run inefficiently on parallel machines.
This may sound like an obvious statement, but it is the root
cause of why parallel programming is considered to be difficult.
The current state of the computer industry is still that almost all
programs in existence are serial.

This talk will describe the techniques used in the Intel Parallel
Studio to provide a developer with the tools necessary to
understand the behaviors and limitations of the existing serial
programs. Once the limitations are known the developer can
refactor the algorithms and reanalyze the resulting programs
with the tools in the Intel Parallel Studio XE to create parallel
programs that work.

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Remember this slide from earlier?

e Basic approach
 Find compute intensive loops
« Make the loop iterations independent ...
so they can safely execute in any order
without loop-carried dependencies
« Place the appropriate OpenMP directive and

test

This reminds me of a rather famous cartoon:

(just use Google search on: then a miracle occurs cartoon

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
Software

Where should we begin?

e Do you start with a blank sheet of paper
... Or not?

1. You need to organize your ideas
— Usually by expressing a serial algorithm

2. Otherwise you may be asked to improve
software with demonstrated value

— Usually expressed by a serial implementation
— Or a process in your MPI program, another serial program

e Either way, you likely start serial

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

Do you really mean that?

for (intI =0; I < N; ++4+1I) for (intI =0; I < N; ++I)
A[I] = B[I] + C[I]; Work(&A[I]);

e This loop is equivalent to: e This loop is equivalent to:
I =0; I =0;
if (! (I < N)) goto done; if (! (I < N)) goto done;

A[O] = B[O] + C[0]; //I =0 Work(&A[0]); //I =0

++1; ++1;
if (! (I < N)) goto done; if (! (I < N)) goto done;

A[1] =B[1] + C[1]; //I =1 Work(&A[1]);//1=1
- done: - done:

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

Or did you really mean this...

for (intI =0; I < N; ++I1)
A[I] = B[I] + C[I];

for (intI =0; I < N; ++I1)
Work(&A[I]);

Software

or even...

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Digression: debugging

e What is still the #1 debugging tool in use today?
- A %print” statement

e Inserting a "pri nt ” statement into your serial program
typically does not change its behavior, but allows
observation of what is happening

e Serial languages force you to specify the semantics of your
algorithm by enforcing a specific serial execution

e Parallel languages force you to specify what is allowable to
execute in concurrently

We can use this debugging technique to bridge
the gap and observe potential parallelism

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Bridging the gap

e Annotations are statements that markup existing algorithms to
express the parallel model requested

e Intel® Advisor XE accomplishes this with a core set of
modeling annotations:

— SITE (where should I focus)
— TASK (what should I do)
— LOCK (it really is serial)

e Similar to concepts in OpenMP, TBB, or Cilk — but simplified

Annotations can be considered as-if the
are “print” statements to a special trace file

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved. 8

*QOther brands and names are the property of their respective owners.
Software

Annotation: SITE (where should I focus)
Intel® Advisor XE uses a SITE to:

1. Define a name for a section of the application

2. Declare that all interesting things to analyze
occur inside of this section

3. Declare that any parallelism that is declared
will be finished before the section exits

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.
Software

Example: SITE

#include <advisor-annotate.h>

ANNOTATE_SITE_BEGIN(MySite);
Work(&A[0]);

Work(&A[1]);
ANNOTATE_SITE_END();

e Annotations are just statements with no visible side-effects

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

Annotation: TASK (what should I do)

Intel® Advisor XE uses a TASK to:

1. Define a name for a section of the application

2. Declare the statements in this section could
be executed immediately or deferred

3. Declare the statements in this section can
overlap (concurrent/parallel) execution with
other statements in the enclosing SITE

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved. 11

*QOther brands and names are the property of their respective owners.
Software

Example: TASK

#include <advisor-annotate.h>

ANNOTATE_TASK_ BEGIN(MyTask0);
Work(&A[O0]);
ANNOTATE_TASK_END();

ANNOTATE_TASK_BEGIN(MyTask1);
Work(&A[1]);
ANNOTATE_TASK_END();

e Annotations can partition the serial execution to be a specification
for parallel execution

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

Annotation: LOCK (it really is serial)

Intel® Advisor XE uses a LOCK to:

1. Define an (non-unique) name for a section of
the application

2. Declare that sections with this name are not
allowed to execute in parallel, they must be
serialized

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

13

Example: LOCK

#include <advisor-annotate.h>

ANNOTATE_LOCK_ACQUIRE(0);
globalCounter = globalCounter + 1;
ANNOTATE_LOCK_RELEASE(0);

e A LOCK is a concept familiar to developers, but it really
means a serialized section of code

e This annotation may be implemented with other non-lock
based synchronization mechanisms, such as atomic variables

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

What about loops?

e The combination of a SITE + TASK usincrt;la serial looping

construct can be used to model a paralle

#include <advisor-annotate.h>

ANNOTATE_SITE_BEGIN(MyLoopSite);

for (intI =0; I < N; ++1I) {
ANNOTATE_TASK_BEGIN(MyIteration);
Work(&A[I]);
ANNOTATE_TASK_END();

¥
ANNOTATE_SITE_END();

oop

Software:

#include <omp.h>

#pragma omp parallel
#pragma omp single
for (intI =0; I < N; ++1) {
#pragma omp task

Work(&A[I]);
b

OpenMP equivalent

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

15

What about loops (continued)?

e The combination of a SITE + TASK can be optimized via the
ITERATION_TASK annotation

#include <advisor-annotate.h> #include <omp.h>
ANNOTATE_SITE_BEGIN(MyLoopSite); #pragma omp parallel for
for (intI =0; I < N; ++I) { for (intI =0; I <N; ++1) {
ANNOTATE_ITERATION_TASK(Mylteration); Work(&A[I]);
Work(&A[I]); b
b
ANNOTATE_SITE_END();

OpenMP equivalent

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved. 16

*QOther brands and names are the property of their respective owners.
Software

Intel® Advisor XE

e A product in Intel® Parallel Studio 2013, which is a
plug-in for Microsoft* Visual Studio, and also
available on Linux

e A design tool that assists in making good decisions
to transform a serial algorithm to use multi-core
hardware

e A serial modeling tool using annotated serial code to
calculate what might happen if that code were
executed in parallel as specified by the annotations

e A methodology and workflow to help you learn
where to use parallel programming

Copyright© 2011, Intel Corporation. All rights reserved. 17
n property ir respective o
Software

Why estimate performance first?

o If programs were trivial to parallelize we would
have already finished converting them

e Amdahl's law states the benefit of parallelism is a
based on the fraction of execution you parallelize

e Therefore, you must focus effort on the places that
are valuable to parallelize, not the places that are
easy to parallelize

Until you have a plausible parallelism model
that can achieve the benefits you want, it does
not pay to check if it can be made correct

(on an ideal machine)

Software:

Copyright© 2011, Intel Corporation. All rights reserved. 18
*QOther brands and names are the property of their respective owners.

Step: Survey Target

G fnfslfxfhnme!pmpeter1IinteIfadvixe,_fproiects}ANL-Extreme-S:ale-Cnmputing!pi - Intel Advisor

File View Help

B kB ¥ s =
Advisor XE Workflow
[1. survey Target

Where should | consider adding paralielism?

Locate the loops and functions where your “* summary |-l 4 Annotation Report | Suitability Report » Correctness Report
program spends its time, and functions that

call them.
| % | collect Survey Data

Welcome pi - e000 [

-

= = A i
% Where should I add parallelism? & Intel Advisor XE 2013

.4-9_ :&;j'ﬂ View'Suurce_

Function Call Sites and Loops | Total Time % Total Time Self Time HotLloops Source Location
| B | View Survey Result | Total | 100.0% mm 1.02005 0s ' '
= : ~__libc_start_main 100.0% m 1.0200s 0s
é 2. Annotate Sources = [loop in __libc_start_main] 100.0% M 1.0200s 0s
Add I_ntel Advisor XE annotatiops to M}i ~main | 100.0% mmm 1.0200s 0s [pi_serial.cpp:30 '
g:?:;giesﬁaer:"el BlSk AN InCIc eeioH g < [loop at pi_serial.cpp:45 in main] | 100.0% P 1.0200s Os e % pi_serial.cpp:45

Steps to annotate

~compute_pi | 100.0% mEEE 1.0200s 0s pi_serial.cpp:17

|| View Annotations

] 3. check suitability

Analyze the annotated program to check its
predicted parallel performance.

| 4 | Collect Suitability Data

| B | view Suitability Result

@ 4. Check Correctness k

Predict parallel data sharing problems for
the annotated tasks. Fix the reported
sharing problems.

|_ii3_| Collect Correctness Data

| | View Correctness Result

[il | EU] " [12]
Example: |Iteration Loop, Singie'}Zl 53 Copy to Clipboard || ¥ ||

// To copy compiler options, select Build Settings from the drop-down list.

*5. Add Parallel Framework

Steps to replace annotations

(
£ | View Summary - . o . .
| finclade "adviso nnotate . h"// Add to each module that contains Intel Advisor XE annotationz

n a parallel code region (parallel site)

1;/{ Place before the loop control statement

Yk op control statement
/f If the entire loop body is not a si lect Loop, One or More Tasks from the 1i
Current Project: pi ANNOTATE ITERA N_TASK{ MyTa i h art of loop body. This iterative-task a::atatia._‘
— // loop body]
4 | Project Navigator Advisor XE Work) < || I I D]

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Step: Survey Target — View Sources

Software:

&

Im

ile View Help

‘@ M @ o4 @
Advisor XE Workflow
1% 1. Survey Target

Where should | consider adding parallelism?
Locate the loops and functions where your
program spends its time, and functions that
call them.

|7¥7| Collect Survey Data
| | View Survey Result

& 2. Annotate Sources

Add Intel Advisor XE annotations to identify
possible parallel tasks and their enclosing
parallel sites.

Steps to annotate
| | View Annotations

]3. check suitability

Analyze the annotated program to check its
predicted parallel performance.

|T*P_|§i Collect Suitability Data
| & | view suitability Resuit

@ 4. Check Correctness

Predict parallel data sharing problems for
the annotated tasks. Fix the reported
sharing problems.

| & | Collect Correctness Data

| @ | View Comectness Result

’ 5. Add Parallel Framework

= Steps to replace annotations

! |View summary

Current Project: pi

4 | Project Navigator Aﬁlvisor XE Work » -

/nfs/fx/home/pmpeterl/intel/advixe/projects/ANL-Extreme-Scale-Computing/pi - Intel Advisor

u

=

Welcome | pi - €000 = =
" Where should | add parallelism? (Source) o Intel Advisor XE 2013

& Annotation Report | Suitability Report # Correctness Report Survey Source X &

Line Source Total Time % LoopTime % (2]] pi-p
7 double compute_pi{ int n, long num_steps) . | compute _pi - pi_serial.cpp:17
I8 i @i main - pi_serial.cpp:45

| long i} [& main - pi_serial.cpp:30

10 double step; % libc_start_main

11 double sum; %_Iibc_start_main

12 double x; |

13

14 // TODO: The argument 'n' specifies the

15

16 sum =
17 step =
18

19 x = 0.5 * step;
20

0/ (double) num_steps;

73 X #+= step; 1.020s @
23 sum += 4.0/ (1.0+x*x=); 0.880s 0
24
25

26 return (step * sum };

Selected (Total Time): 0.080s =
(] T : 2] n : L] |
Example: |Iteration Loop, SEngie'}ZI (B3 Copy to Clipboard [v

/! To copy compiler options, select Build Settings from the drop-down list. [

"advisor-annotate.h"// Add to each module that contains Intel Advisor XE annotations

(parallel site)

lace before the loop control statement

One or More Tasks from the list

lace at the start of loop body. T iterative-task annotatio

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Survey - How Does it Work?

e Statistical Call Stack Sampling
e Focus on top-down inclusive execution time

e Define a periodic timer to sample IP addresses
e Unwind the call-stack at sample points

e Statically analyze the binary to detect loops

e Display the aggregate time a sample:
— hits a basic block (IP or call stack-frame)
— a call-stack frame intersects a loop

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

21

Step: Annotate Sources

/nfs/fx/home/pmpeterl/intel/advixe/projects/ANL-Extreme-Scale-Computing/pi_annotated - Intel Advisor

FEile View Help
‘@ s HE ¥4a

Welcome pi_annotated - e000 =

% Where should I add parallelism? (Source) & Intel Advisor XE 2013

Summary -, Survey Report & Annotation Report ° Suitability Report # Correctness Report Survey Source X

Line Source Total Time Loop Time !
19 step = 1.0/ (double) num_steps; | | |/ & main - pi_annotated.cpp:287
20 [main - pi_annotated.cpp:41
21 x = 0.5 * step; % libc_start_main
22 £ _ libc_start_main
23 (&1 () { // Trick to isolate the site into-a separate stack frame for better ||
24 (&1 0)
25
26
27 re1 e v rho ofFa - . e T
28 a g bl s FILCK LO 150liate the Si1te 1Lnito 4 Separdte
29 [
30 sum += 4.0/ (1.04x%%) ; L& L) A
31 }
32 ANNOTATE_SITE END(pi_loop);
33
N T . - 5
3 e ANNOTATE _SITE BEGIN (pi_loop);
35 YO
36 ror 1ot :i=U; 1 < num_Steps; 1++]
37 return (step * sum); 3
2 ANNOTATE _ITERATION_TASK (pi_task);
= o X += step;
Example: |lteration Loop, Single | ~ | ¥
// To copy compiler options, select Build Setting T = II-II "] i f ' g =M . x | "
#include "advisor-annotate.h"// Add to each modul 1
// Begin a parallel code region (parallel site) s ki i i, el it g 3
HOTATE STTE EECIN(MySitei);// Place befors th ANNOIRLE SIIE END (pL_loopl;
/{ loop control statement
/4 If the entire loop body is
/{ loop body) [:' i
ANNOTATE ITE_END () ; // End-the parallel code regi #
L] i
. ¥

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Step: Check Suitability

e /nfs/fx/home/pmpeterl/intel/advixe/projects/ANL-Extreme-5Scale-Computing/pi_annotated - Intel Advisor

File View Help
‘@ s HE ¥ ¥a &

Welcome | pi_annotated - e000 &

4

" What are the performance implications of the annotated sites? & Intel Advisor XE 2013

Summary -, Survey Report 4 Annotation Report RTEIMELNRVE LTI 8 # Correctness Report

/& Instances of task pi_task are too small. Suitability data may be unreliable.

A significant fraction of the total time spent in parallel site pi_loop is in instances of iteration task pi_task taking less than 50 nanoseconds. This can
result in measurement errors which can make the Suitability data for this site unreliable. It also means that this is unlikely to be a suitable task,
because task overhead is likely to be greater than the time saved by parallelizing the tasks.

Maximum Program Target CPU Count: |'3 \j! Threading Model: |intel TBB j!
Gain For All Sites: - ——— e
Annotation Label Source Location Maximum Site Gain Maximum Total Gain Average Instance Ti... Total Time
7.69x pi_loop [pi_annotated.cp... 7.69x 7.66x 0.4497s 3.5974s
Scalability of Maximum Site Changes 1 will make to this site to improve performance
AKX Gain Type of Change Benefit if Checked Loss if Unchecked Recommended
32x% -] Reduce Site Overhead 0.04x No
n:. 16x] Reduce Task Overhead 0.20x No
= e [Reduce Lock Overhead No i
= 2 1 Reduce Lock Contention No
2 gx
w # Enable Task Chunking 7.69% Yes
T 2
o
; 1x
2 4 8 16 32 64
Target CPU Count
| Annotation Annotation Label Source Location Number of Instances Maximum Instance Time Average Instance Time Minimum Instance Time Total Time
Selected Site pi_loop [# pi_annotated.cpp:26 8 3.2255s 0.4497s < 0.0001s 3.5974s
Task pi task pi_annotated.cpp:28 111,111,110 < 0.0001s < 0.0001s < 0.0001s 3.5950s

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Software:

Suitability - How Does It Work?

e Performance Modeling
e Gather an event trace of modeling annotations at runtime
e Build a compressed execution tree
e Simulate the execution tree
— On an ideal parallel machine

— Under varying number of threads
— With varying assumptions about overhead and scheduling

e Display the results and show how to improve the model

e The purpose is to check if the performance model is “suitable”
as a starting point for parallelization
e It is not designed as an accurate performance prediction
— Tree compression, Greedy Scheduling,
— Ideal machine, No memory model, ...

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Suitability -
Rocks and Sand Trace Compression

A4

Parallel Rock
\ J \ J
| |

N1 * @ N2 * @
Sand Sand

Count the rocks, but weigh the sand

Software:

Copyright© 2011, Intel Corporation. All rights reserved. 25
*Other brands and names are the property of their respective owners.

Step: Check Correctness

File View Help
‘@ s z] cH e
Advisor XE Workflow =

2% 1. survey Target

Where should I consider adding parallelism?
Locate the loops and functions where your
program spends its time, and functions that
call them.

|“ | View Survey Result

é 2. Annotate Sources

Add Intel Advisor XE annotations to identify
possible parallel tasks and their enclosing
parallel sites.

Steps to annotate

|“ | View Annotations

] 3. check suitability

Analyze the annotated program to check its
predicted parallel performance.

| ¥l | collect Suitability Data

| | View Suitability Result

f@ 4. Check Correctness

Predict parallel data sharing problems for
the annotated tasks. Fix the reported
sharing problems.

i | View Correctness Result

*5. Add Parallel Framework

= Steps to replace annotations

|| View summary

Current Project; pi_annotated

e /nfs/fx/home/pmpeterl/intel/advixe/projects/ANL-Extreme-Scale-Computing/pi_annotated - Intel Advisor

™ Did the annotated tasks expose data sharing problems? &

Software:

~u

=

Welcome pi_annotated - e000 [

Intel Advisor XE 2013

Summary ., Survey Report 4 Annotation Report | Suitability Report [X150t CEER T 103

Site Name Modules State

D @ Type Sources Severity
| P1 @ Parallel site informat... pi_loop pi_annotated.cpp 2_pi_annotated_debug « Not...|| gror 2 items
P2 | - |Data communication |piloop |pi_annotated.cpp| 2 pi_annotated_debug| New |JPN 1item
P3 & Data communication pi_loop pi_annotated.cpp 2 pi_annotated debug R New Tipe
Parallel site infor... 1 item
k Data communica... 2 items
- Site Name
pi_loop 3 items
Source
pi_annotated.cpp 3 items
Module
ID Description Source Function Module State 2 pi_annotated_... 3 items
<X2 Parallel site [pi_annotated.cpp:... _ZZZ10compute_piil... 2_pi_annotated deb... R New || state
2 New 2 items
75 ANNOTATE. SITE.BESIN(pi_ioop)s Not a problem 1item
27 for | <
28 kL
¥X3 Read ompute_piil ... 2_pi_annotated_deb... R New
27 fe (I
28 Al 7
29 x += step;
3 sum += 4.0/(1.0+x*x]);
X4 \Write [# pi_annotated.cpp:... _ZZZ10compute_piil... 2_pi_annotated_deb... R New
27 for | < ive)
éB X += step;
v sum = O i1, 0%}

7 Sort By Item Name || 3

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

26

Correctness — How Does It Work?

e Memory Trace Analysis
e Only instrument the program when inside a SITE

e Record a history of prior memory accesses
e Record the SITE/TASK structure

e When the next memory location is accessed, check:

— If the prior access was in a concurrent TASK
— If the prior access was in an equivalent LOCK context
— Either this access or the prior access was a write

e Tell the user about
- Data Communication - RAW dependence
— Memory Reuse - WAR or WAW dependence
— Inconsistent LOCK usage

(Inte,l Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.
Software

27

What Is The Next Step?

e Great parallel performance requires real hardware
on which to tune your implementations

e Parallelism is not just relaxation of serial algorithms

=== \/Tune Amplifier XE

[@ causersiviovin
— bt

'~ ¥ Waade A0 30X]

iy e | 102 | 0i4s | rozshe

and Waits /& @ Intel VTune Amplifier XE-2011

1023hs x

¥ Locks and Waits - Lo

@ Anabyds Target Amalycis Type B Cnlisetion log | 1 ry | (- BotamEU | o Top-down Traa

Obrject Creation

1 stackic) celected. Viewing 1ofL |
Syne Object Wait Time~ 1) :
: ; Wait Sgin Current stack & 100.0% of selection
- Function c . Object Type
- Call Stack il 100.0% (15,6663 of 15566

Rmdaf—pi:mﬁ-recrIEID‘Q‘DiL'dIE
RenderSystem_DirectDS.0LLIIS
| [] Meruel Reset Event Ogrehtain.dll Ogre: Resource:los
S Multighe Objects 154515 43 D5 Constent OgreHighlevelGp]l r011mG
i BaseThreadln, 154505 742 05 Constent I 0gre:Fesource:los
HInstrumentati. 0.000s 1 Ds Comstant Ogreain Al Ogre=GpuProgram

1 Manual Reset Bv) 1421 D: Marual Reset Event | Corehdaindlil Ogre:Pesss fos

¥ Thread Posl 1533« (RN 0 Ds Constant OgreMain dil Ogres Techniques
HSleep 7.517s DN 716 DO36s Constant

Selected 1 rowls) 1556665 0 -

Fie Hep
H oo bee
012ti3

“cle . Poar [IOI(. Ideal

1 Marius] Reset Ev| 15566

Deadlocks and Data Races Intel Inspector XE 2011

ection Log| | © Summary Sources

Call Stack ®
~ [l Bind_and_fx_threadng_errors.exe!
ermors.exe

ssure and underexposure hese ® find_and_fix_threadin

= Handle .
2 ad Lic i L A (iat) (sel.z*258); //see cocemests oo line 104 fnd_and_fix_threadng_i s.ee!
U u T " ' T T T TP | Ruler A 1f (R > 2%5) R = 258, find_and_fi_threading_errors.exe!

u
= Crb » 5 s 155 s 5% 305 3 40 455

AN CRTSter ...
[Thread (0x2244) =
[Threod (0x2bc4]
[Thread (0x2364)

Thiead

o[calistack ©
~ [Bfind_and_fix_threading_errors. exe!
fnd_and_fx_threading_errors exe!
find_and_fix_threadng_errors.exe!
find_and_fix_threading_errors.exe!

Thread Conaurency

Frane v o | LR
- T -

[Code Locations/ Timeline
D Descrption » Source Function Madue State ~
X15 HINT: Synd gation alocation ...) task_scheduier_int h:81 task_scheduler_|... find_and_fi_threading_ermors.e... New
X5 Read B tachyon_find_and_fix_threading_er Cpp ... render_one_puel find_and_fx_threadng_errors.e.... New
X6 Read tachyon_find_and_fix_threading_ermors.cpp ... render_one_picel find_and_fix_threading_emors.e... New

2 oiad e Bed and o spoibee poerrooo asda o Sed ot B sbonato e

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Software:

Writing Parallel Programs That Work

1.

Software:

You need the ability to express your computation
... usually serially

. You need to understood the serial code

... as a specification of what computations must happen

. You should create a parallel model of the code

... Intel® Advisor XE can be very helpful

. You then express the parallel computation

.. With your favorite parallel framework

. You should finish by tuning on parallel hardware

... Intel® Parallel Studio XE can be very helpful

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

29

Intel® Parallel Studio 2013 XE

e More information about Parallel Studio XE and Advisor XE is
available online, including a 30-day free trial

www.intel.com/go/parallel

Supports Microsoft Visual Studio 2005, 2008 and 2010.
eSupport Linux

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

30

Software:

tel.

Software

Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

31

Optimization Notice

Software:

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel and non-Intel microprocessors (for example SIMD
instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler
options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for
Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and
specific microprocessors they implicate, please refer to the “Intel Compiler User and Reference Guides” under
“Compiler Options." Many library routines that are part of Intel® compiler products are more highly optimized
for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel compiler
products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same
degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel Streaming SIMD Extensions 2 (Intel SSE2), Intel Streaming SIMD Extensions 3
(Intel SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel and non-Intel microprocessors, Intel recommends that you evaluate other compilers and
libraries to determine which best meet your requirements. We hope to win your business by striving to offer

the best performance of any compiler or library; please let us know if you find we do not.
Notice revision #20110228

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

32

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantlP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.

*0Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

Software:

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

Step: Add Parallel Framework

e Final step: Convert annotations into uses of a parallel framework

e Examples in three parallel frameworks are used
— Intel® Cilk™ Plus
— Intel® Threading Building Blocks (Intel® TBB)
- OpenMP*

e Converting a parallel model into explicitly parallel
implementation is straightforward

e Each parallel framework you might use has concepts similar to a
SITE, TASK, or LOCK

e Learning how common parallel framework features match
annotations allows easy conversion to an explicitly parallel
implementation

(inteD

Software:

Copyright© 2011, Intel Corporation. All rights reserved. 34
*QOther brands and names are the property of their respective owners.

Parallel Framework:
OpenMP

Specialized syntax can represent our parallel models efficiently

#include <advisor-annotate.h>

ANNOTATE_SITE_BEGIN(MyLoopSite);
for (intI =0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyLooplIteration);
Work(&A[I]);
ANNOTATE_TASK_END();

¥
ANNOTATE_SITE_END();

Software:

#pragma parallel for
for (intI =0; I <N; ++I) {
Work(&A[I]);
by

Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.

35

Parallel Framework:
Intel® Cilk™ Plus

Specialized syntax can represent our parallel models efficiently

Software:

#include <advisor-annotate.h>

ANNOTATE_SITE_BEGIN(MyLoopSite);
for (intI =0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyLooplIteration);
Work(&A[I]);
ANNOTATE_TASK_END();

¥
ANNOTATE_SITE_END();

cilk_for (intI =0; I < N; ++1I)
Work(&A[I]);

Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.

36

Parallel Framework:
Intel® Threading Building Blocks (Intel® TBB)

Libraries can also represent our parallel models efficiently

#include <advisor-annotate.h>

ANNOTATE_SITE_BEGIN(MyLoopSite);
for (intI =0; I < N; ++I) {
ANNOTATE_TASK_BEGIN(MyLooplIteration);
Work(&A[I]);
ANNOTATE_TASK_END();

¥
ANNOTATE_SITE_END();

#include "tbb/parallel_for.h"

-tlllab::parallel_for (O, N, 1,
[=](int I) { Work (&A[I]); }),

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

Parallel Framework:
OpenMP

Exploit unique parallel framework features

#include <advisor-annotate.h>

ANNOTATE_ACQUIRE_BEGIN(0);
std::cout << A[I] << std::endl;
ANNOTATE_RELEASE_END(0);

#include <omp.h>

#pragma omp critical
std::cout << A[I] << std::endl;

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.

Software:

38

Parallel Framework:
Intel® Cilk™ Plus (cont.)

Exploit unique parallel framework features

#include <advisor-annotate.h>

ANNOTATE_ACQUIRE_BEGIN(0);
std::cout << A[I] << std::endl;
ANNOTATE_RELEASE_END(0);

#include <cilk/reducer_ostream.h>

cilk::reducer_ostream cout_reducer(std::cout);

cout_reducer << A[I] << std::endl;

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

39

Parallel Framework:
OpenMP

Generic models can translate to specialized implementations

#include <advisor-annotate.h>

ANNOTATE_LOCK_ACQUIRE(0);
globalCounter = globalCounter + 1;
ANNOTATE_LOCK_RELEASE(0);

#include <omp.h>

#pragma atomic
++globalCounter;

(Inte,l: Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.
Software

40

Parallel Framework:
Intel® TBB (cont.)

Generic models can translate to specialized implementations

Software:

#include <advisor-annotate.h>

ANNOTATE_LOCK_ACQUIRE(0);
globalCounter = globalCounter + 1;
ANNOTATE_LOCK_RELEASE(0);

#include “tbb/atomic.h”
tbb::atomic<int> globalCounter;

++globalCounter;

Copyright© 2011, Intel Corporation. All rights reserved.

*QOther brands and names are the property of their respective owners.

41

Software:

About the speaker

Paul Petersen is a Sr. Principal Engineer in the Software and Solutions
Group (SSG) at Intel. He received a Ph.D. degree in Computer Science
from the University of Illinois in 1993.

After UIUC, he was employed at Kuck and Associates, Inc. (KAI)
working on auto-parallelizing compiler (KAP), and was involved in the
early definition and implementations of OpenMP. While at KAI, he
developed the Assure line of parallelization/correctness products, for
Fortran, C++ and Java.

In 2000, Intel Corporation acquired KAI, and he joined the software
tools group. At Intel, he worked with the tools group to create the
Thread Checker products, which evolved into the Inspector and
Advisor components of the Intel® Parallel Studio. Inspector uses
dynamic binary instrumentation to detect memory and concurrency
bugs, and Advisor uses similar techniques along with performance
measurement and modeling to assist developers in transforming
existing serial applications to be ready for parallel execution.

Copyright© 2011, Intel Corporation. All rights reserved.
*QOther brands and names are the property of their respective owners.

42

Software:

Abstract: Serial algorithms typically run very inefficiently on parallel machines. This may sound like
an obvious statement, but it is the root cause of why parallel programming is considered to be
difficult. The current state of the computer industry is still that almost all programs in existence are
serial. To address this situation, Intel has created Parallel Studio XE, and in particular Advisor XE.

This talk will describe the techniques used in Advisor XE to provide a developer with the tools necessary
to understand the limitations of the existing serial algorithms. Once the limitations are known the
developer can refactor the algorithms and reanalyze the resulting code to see if it could run effectively
on parallel hardware. Almost all implementations of serial algorithms are serial for a reason, and the
tools available in Advisor XE help the user expose these reasons so that appropriate rewrites can be
done.

Bio: Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He
received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he
was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and
was involved in the early definition and implementations of OpenMP. While at KAI, he developed the
Assure line of parallelization/correctness products, for Fortran, C++ and Java. In 2000, Intel
Corporation acquired KAI, and he joined the software tools group. At Intel, he worked with the tools
group to create the Thread Checker products, which evolved into the Inspector and Advisor
components of the Intel® Parallel Studio. Inspector uses dynamic binary instrumentation to detect
memory and concurrency bugs, and Advisor uses similar techniques along with performance
measurement and modeling to assist developers in transforming existing serial applications to be ready
for parallel execution.

Copyright© 2011, Intel Corporation. All rights reserved. 43

*QOther brands and names are the property of their respective owners.

